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SUPPLEMENTARY DATA IN SIX PARTS 
 
Part A. Ethiopia Cross section.  
Part B. Extended caption for Figure 3 of the Text. 
Part C. Igneous age compilations, central South Atlantic, providing detail for Figure 6. 
Part D. Additional seismic reflection data, Gulf of Mexico. 
Part E. Igneous age compilations, Gulf of Mexico, providing detail for Figure 8. 
Part F. Iceland as a quasi-analogue for the São Paulo Plateau 
 
Supplementary Data, Part A. Cross section, Main Ethiopian Rift.  
 
Supplementary Data, Fig. A1. Radar image of the Ethiopian region (see location in Fig. 2) 
showing the elevation profile along the indicated section across the dynamic high, modified 
from Sembroni et al. (2016). Central Main Ethiopian Rift (MER) is a local low due to 
tectonic subsidence but remains above sea level (+1000 m) due to the greater regional 
dynamic uplift. Active magma-rich rifting dominates the central portion of the section but 
diminishes outward in both directions. The smooth dashed white line below the black section 
location line shows an idealized estimate of future dynamic subsidence (dissipation of 
dynamic uplift) if the upward dynamic force from the plume were removed. We show a 
moderate magnitude that reaches 1.5 km in the centre, but the dynamic subsidence could be 
even greater. Because erosion and extensional faulting are strong (see topographic profile), 
we expect the area of today’s uplift would be negative after the dissipation. 
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Supplementary Data, Part B. Extended caption for Figure 3 of the text. 
 
Lithosphere–plume interactions. Lithosphere, beige; aesthenosphere, grey; magma-rich active 
rifting, red; areas already rifted but moving off the plume, rose. Pluton shapes (pink) signify 
complex magmatism at hotspots and magmatic segments (Ebinger and Casey 2001; Ebinger 
et al. 2017), white where magmatism is only rarely active. Beige arrows show sediment 
dispersal, flowing outward early on but then inward or in-situ when early accommodation 
develops. (a) Diachronous evolution of a point tracked by black arrows on a plate migrating 
over a quasi-stationary plume. Dynamic uplift is augmented by isostatic response to surface 
erosion and to thermal thinning of the base lithosphere. At time T1, marine sedimentation at 
water depth Y; time T2, shallowing, regressive sedimentation, offlap; T3, hot spot 
magmatism, thermal thinning of the ebase lithosphere and crustal thinning by surface erosion, 
with local subaerial deposition in lows (not shown); T4, end of most magmatism (white 
remnant diapirs), beginning of dynamic subsidence (dissipation of dynamic uplift) and 
thermal re-equilibration of base lithosphere (as shown only at base lithosphere in b4), with 
marine transgression and onlap onto eroded/magmatic surface; T5, return to basinal 
deposition (yellow), with the erosional unconformity Z deeper than Y due to erosional 
thinning; T6, continued marine sedimentation with sporadic record of former hot spot 
magmatism. (b0–b4) Symmetrical formation and migration of magma-rich conjugate 
margins over and off a stationary plume. (b0) Early stage of plume, with general uplift, flood 
basalt eruption and magmatic intrusion, initial outward transport of eroded sediments. (b1) 
Early magma-rich rifting (red) between two future plates with symmetrical displacement off 
a fixed central plume. Dynamic uplift and thermal erosion (thinning) of base lithosphere keep 
rift surface above sea level while lithosphere thins. Point P1 was once on the rift crest at P2 
but is being displaced off the plume flank by lithospheric extension and magmatic addition. 
Both dynamic and thermal subsidence will begin near P1. (b2) Black and grey faults are 
active and inactive, marking zones of continued rifting (red) and rifted crust (rose), 
respectively. Point now marks the central sag basin undergoing both dynamic and thermal 
subsidence, where little further faulting or magmatism occurs, having moved off the plume 
flank. Sediment transport is split outward and inward depending on height and continuity of 
rift shoulders. P2 marks sag or salt section onlap onto the active central magma-rich rift high 
(P3), which is kept elevated by dynamic uplift. At some settings, magmatism (red zone) 
overwhelms thinning crust to create thick magmatic crust and further widening of the 
margins after actual continental breakup has occurred. At the hinge line, post-rift onlap 
occurs onto full-thickness continental crust which is drawn downward by flexural loading. 
(b3) Both margins are approaching their full tectono-magmatic extension. The central 
magmatic rift axis will fall below global sea level when tectonic subsidence of continental or 
magmatic crust dominates dynamic uplift, which is beginning to wane as more normal 
seafloor spreading is imminent. Transition from sag (yellow) to salt (dark pink) marks either 
a palaeogeographic connection of the basins to the world ocean, or subsidence below global 
sea level. Sag/salt section (now salt in b3) continues to onlap central magma-rich rift high 
and eventually buries it as it founders by rifting. P1 is receiving salt above the sag; P2 had 
marked the sag section onlap limit onto the central rift in b2, but is now downfaulted because 
it was at the former limit of rifting; P3 has only salt which is faulted with basement, and will 
undergo some syn-rift subsidence and then dynamo-thermal subsidence, potentially 
producing the thickest salt accumulation along the whole margin; P4 is where the magmatic 
crust will breakup and transition to seafloor spreading. If available, sediment transport begins 
to become mainly inward where it loads salt to cause salt deformation. (b4) Magmatic budget 
(plume intensity) continues to wane to that of normal seafloor spreading (in this model), 
although at shallower levels than normal (<2.6 km subsea) if the dynamic elevation is not yet 
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fully diminished. Faulting largely ceases at P3 where salt is already thickest, and continued 
extension is taken up as seafloor spreading at P4–P5. Salt flows under gravity but can also be 
stretched by late rifting, with ‘crept’ salt spilling out onto the proximal fringe of the oceanic 
crust. Shallow water settings may exist out to P3, but basinward halokinesis will increase the 
average bathymetry of the salt. 
 
  



 4 

Supplementary Data, Part C. Igneous age compilations, central South Atlantic, 
providing detail for Figure 6. 
 
Supplementary Data, Figs. C1a,b,c. Same maps as in Figure 6a,b,c but showing published 
or observed (in seismic data) occurrences of igneous activity around the times of each map. 
Sources of information are tied to the key by symbols, and the references are given below. 
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References cited in Supplementary Data, Part C.  
 
References used for the isopach lines of Supplementary Data, Fig. C1c. 
 
Assine et al. (2008), Contreras et al. (2010), Contreras (2011), de Melo Garcia et al. (2012), 
Evain et al. (2015), Gomes et al. (2012), Gordon and Mohriak (2015), Jackson et al. (2015), 
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and Oliveira (2005), Zalán et al. (2011). 
 
References used for the igneous ages for Supplementary Data, Part C, including those 
for the isopach lines in Supplementary Data, Fig. C1c. 
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https://doi.org/10.1016/j.marpetgeo.2010.06.007 
 
Contreras, J., 2011. Seismo-stratigraphy and numerical basin modeling of the southern 
Brazilian continental margin. Doctoral dissertation. Universität Heidelberg. 171 p. 
 
de Assis Janasi, V., de Freitas, V.A. and Heaman, L.H. 2011. The onset of flood basalt 
volcanism, Northern Paraná Basin, Brazil: a precise U–Pb baddeleyite/zircon age for a 
Chapecó-type dacite. Earth and Planetary Science Letters, 302(1–2), pp.147–153. 
https://doi.org/10.1016/j.epsl.2010.12.005 
 
Deckart, K., Féraud, G., Marques, L.S. and Bertrand, H. 1998. New time constraints on dyke 
swarms related to the Paraná-Etendeka magmatic province, and subsequent South Atlantic 
opening, southeastern Brazil. Journal of Volcanology and Geothermal Research, 80(1–2), 
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de Melo Garcia, S.F., Letouzey, J., Rudkiewicz, J.L., Danderfer Filho, A. and de Lamotte, 
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deformation in the Santos Basin (Brazil). Marine and Petroleum Geology, 35(1), pp.337–
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Dias, J.L., Sad, A.R.E., Fontana, R.L., and Feijó, F.J. 1994, Bacia de Pelotas, Boletim de 
Geociencias da Petrobras, v. 8, p. 235–245. 
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Supplementary Data, Part D. Additional seismic reflection data, Gulf of Mexico. 
 
Figure Supp Data D1. 3D line off western Campeche (SD3, see Figure 8c of the main paper 
for location, courtesy of ION). Continental crust is not visible. “Basement” comprises faulted 
layered igneous flows or SDRs, probably inner SDRs comprising interbedded lava flows and 
sediments above deeper continental half grabens (true basement). The top of the SDRs 
defines a top R1 rift unconformity (TRU1). A sag section with little or no magmatism or 
faulting overlies the TRU1 and approaches 3 km thickness. Basinward this sag section 
expands and is probably lightly faulted (R2 faults) and intruded by igneous material, and may 
be fault controlled from off the section, as well. The sag is overlain with no apparent erosion 
by a base-salt unconformity and an average of 2 km of salt. We consider this margin had a 
magma-rich syn-rift history, but not enough of the zone of breakup can be seen to comment 
on the magmatism during breakup. 
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Supplementary Data, Fig. D2. MX-080 off NW Yucatán (SD4, see Figure 8c of the main 
paper for location). Thinned continental crust lies at depth and reaches the yellow circle, 
underlying a thick section of volcano-sedimentary strata with seaward dipping reflector 
character, probably comprising interbedded lava flows and sediments. In the outer portion of 
the margin, these strata may reach Moho. This volcano-sedimentary section represents 
material fill of the R1 syn-rift phase, but serves as basement in the outer margin, posing a 
semantic issue. There is a base-sag surface that becomes faulted basinward (dashed). The 
overlying sag section approaches 3 km thickness and shows no magmatism. Basinward, the 
sag becomes faulted by R2 syn-rift faults. The sag is overlain with no apparent erosion by a 
base-salt unconformity and an average of 2 km of salt. The sag and base of salt are cut by the 
outer R2 faults. There is a well-displayed outer marginal detachment (OMD) which relays 
tectonic extension above. Accepting the outer volcano-sedimentary fill as basement, then 
basement steps up by ~1 km to the oceanic crust. However, the base of salt steps down to the 
oceanic crust because the sag is thick, possibly downdip from an important fluvial source. 
We consider this margin had a magma-rich syn-rift history, but breakup was magma-poor or 
magma-moderate. 
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Supplementary Data, Figs. D3 a–d. (a) (c) ION strike line from the southern North 
Louisiana Basin showing possible Early Jurassic–Bajocian half graben and sag section above 
inferred CAMP magmatic level, see SD 5a of Fig. 8c for location. (b) simplified shaded 
version of (a). (c,d) progressive reconstructions of (b) to original base level (near sea level) 
for top and base salt time. The reconstructions were made by slicing the original interpreted 
line into ~40 vertical strips, and then returning the horizon in question to base level by 
removing the overburden above the horizon. We estimated the original amount of salt, lost by 
diapirism and southward draining, by assessing regionals of onlap patterns from numerous 
surrounding seismic lines (note shown). The analysis shows the perceived R1 rift 
configuration along the line prior to and after salt deposition. The presence of a thin sag 
section just beneath the salt is possible, depending on whether the faults drawn were 
reactivated or are true R1 faults. Our suggestion that the interpreted volcanic section at depth 
in (a) pertains to CAMP magmatism is crucial for the inference that the rifted half graben 
beneath the salt is Lower Jurassic to Bajocian in age, but this remains unproven. Given the 
pre-salt geology of the US Gulf margin (e.g. Snedden and Galloway 2019; Frederick et al. 
2020 and references in both) an alternative interpretation could be that the rifted half graben 
structure is middle Triassic in age (related to deposition of the Eagle Mills Formation). 
However, such an age would not explain the large subsidence observed in the North 
Louisiana Salt Basin (and other Interior basins) and the US coastal plain. If the faulting were 
Triassic, the development of Middle Jurassic subsidence would have effectively no faulting 
or lithospheric attenuation to drive it. Thus, we are confident that the section shows Lower 
Jurassic–Bajocian rifting. 
 
References cited in Supplementary Data, Figs. D3a–d  
 
Frederick, B.C., Blum, M.D., Snedden, J.W. and Fillon, R.H. 2020. Early Mesozoic synrift 
Eagle Mills Formation and coeval siliciclastic sources, sinks, and sediment routing, northern 
Gulf of Mexico basin. GSA Bulletin, 132(11–12), pp.2631–2650. 
https://doi.org/10.1130/B35493.1 
 
Snedden, J.W. and Galloway, W.E. 2019. The Gulf of Mexico Sedimentary Basin 
Depositional Evolution and Petroleum Applications. Cambridge University Press, 
Cambridge, UK. https://doi.org/10.1017/9781108292795 
 
(a) 
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(Fig. SD5 b,c,d) 
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Supplementary Data, Part E. Igneous age compilations, Gulf of Mexico, providing detail 
for Figure 8. 
 
Supplementary Data, Figs. E1a–c. Same maps as in Figure 8 but showing published or 
observed (in seismic data) occurrences of igneous activity around the times of each map. 
Sources of information are tied to the key by symbols. References are given below. 
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References cited in Supplementary Data, Part E.  
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Bartolini (1998), Lawton et al. (2020) ; C : Lawton et al. (2020) ; D : Barboza-Gudiño et al. 
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(2014) ; F : Alzaga-Ruiz et al. (2009) ; Cantú‐Chapa (1992) ; G : Lawton et al. (2020), 
Ortega-Flores et al. (2021), Silva-Romo et al. (2015) ; H: Damon et al. (1981), Godínez-
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Supplementary Data, Part F. Iceland as a quasi-analogue for the São Paulo Plateau. 
 
 Supplementary Data, Fig. F1 shows Iceland as a subaerial NE-SW trending portion 
of the mid-Atlantic Ridge, elevated by above-average magmatism and dynamic uplift, both 
caused by a deep mantle plume (Schoonman et al. 2017; Barnett-Moore et al. 2017). Iceland 
has a central axial zone of extensional faulting and magmatism (Árnason 2020) between 
relatively dormant onshore zones where erosion and deposition control relief at least as much 
as active rifting. These onshore zones transition offshore where subsidence outpaces 
magmatic growth or dynamic uplift. Given this tectonic setting where plume magmatism, 
dynamic uplift and rifting of thick magmatic crust co-exist, both thermal and dynamic 
subsidence should be operating at the flanks of Iceland, whereas the onshore rift axis should 
be heavily influenced by tectonic subsidence, while being held high by dynamic uplift. 
 

 
 How would Iceland evolve if the plume-driven excess magmatic supply and dynamic 
uplift drastically waned while tectonic extension continued? We suggest the regional Iceland 
high would subside by a combination of dynamic (dissipation of the dynamic uplift) and 
thermal subsidences, i.e. the dynamo-thermal curve in Fig. 4, and that the central rift axis 
would subside even faster due to ongoing tectonic subsidence. Fault motions responsible for 
that extension and subsidence would post-date most magmatism. If we considered such a 
setting within a restricted evaporite basin such as the central South Atlantic, salt precipitation 
would begin while the magmatic crust was still near sea level. Salt’s fast potential rate of 
precipitation could allow deposition to keep pace with the three combined subsidences in the 
rift axis. The result would be rapid (faster than allowed by thermal subsidence alone) 
accumulation of shallow water salt on the little-faulted flanks of the central rift axis, and 
extremely rapid accumulation of salt within the central rift axis. With a lack of magmatism, 
the central rift axis could extend during continued salt deposition to a condition of very thin 
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crust, and subside to an isostatic level approaching that of mantle covered to global sea level 
by salt, which would be on the order of 8 km. 
 
 We contend that this scenario is effectively that which we have interpreted for the 
early São Paulo Plateau (zones 3 and 4 of Fig. 5), following continental breakup when the 
magmatic plateau filled the void between the continental limits of Brazil and Africa (Fig. 
6c,d). Figures 6e,f complete the breakup picture further, integrating the African margin using 
ION CongoSPAN data. 
 


