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COSTA MODEL

A hierarchical carbonate reservoir benchmarking case study for reservoir characterisation,
uncertainty quantification & history matching.

Jorge Costa Gomes, Sebastian Geiger & Daniel Arnold

Institute of GeoEnergy Engineering, Heriot-Watt University, UK

1. Introduction

The COSTA model is an open-source carbonate reservoir case study that uniquely considers
major uncertainties inherent to carbonate reservoirs using one of the most prolific aggradational
parasequence carbonate formation sets in the Rub Al Khali basin, the Upper Kharaib Member
(Early Cretaceous), as an analogue. The novelty of our work is the provision of a unique open
access dataset which enables reproducible science in the field of reservoir characterisation and
simulation, and helps train new generations of geoscientists and reservoir engineers in the art
of characterising, simulating and predicting the reservoir performance of carbonate reservoirs
under different recovery processes.

Our models use fully anonymized, rescaled, repositioned and structurally deformed
subsurface data from 43 wells across multiple fields in the Rub Al Khali basin from different
geo-depositional settings, encompassing various facies, and a variety of petrophysical
properties and hydrocarbon columns above the free water level (FWL). The resulting models,
which have a unique coordinate system, comprise of three main anticlines which form
individual reservoirs that can be extracted for reservoir simulation and engineering studies.
Synthetic production data has been generated from one of the anticlines by adding wells to an
undisclosed ‘truth case’ model to obtain field-wide and well-by-well production data (oil, gas,
and water rates, bottom-hole pressures etc.) for history matching purposes.

The aim of this work has been to create an open access reservoir modelling case study
that considers the major ranges of interpretational uncertainties inherent to carbonate reservoirs
and provide our industry with 144 pre-built reservoir models which considers both,
interpretational scenarios and multiple choices of geomodelling techniques. Moreover, the
integrated models attempt to capture the main reservoir architectures (stratal geometries),
facies, pore systems, diagenetic overprints and wettability variations across the most prolific
carbonate oil reservoirs in the Rub Al Khali basin — the Upper Kharaib Member (Early
Cretaceous) as an analogue.
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Figure 1: Extracted sector model for reservoir simulation and synthetic production data acquisition. [Left]
Showcased is the areal map of oil saturation for the full COSTA model; [centre] top depth map of the field
development plan of the sector and; [right] the field pressure in year 2040.
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2. Model Construction

2.1 Framework Modelling

Modelling the surfaces i.e., surfaces based on well tops versus surfaces based on both well tops

and digitized contour maps. Each provide a unique structural interpretation map not to mention
the chosen modelling algorithm (i.e., convergent, least squares etc). In this study we provide
two unique contour map interpretations for those willing to rebuild their own geological

models.
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Figure 2: Uncertainty inherent to modelling the topography of the surfaces. Example of a surface based on well

tops alone [left] and a surface based on both well tops and synthetic contour map [right].

2.2 Flow Unit Architectures

Table 1: Geological characteristics of the wells used to construct the closure of interest.

Original Avg. Avg. Reservoir
oo | smewral | ool | (porosiy) | (permeabilty) | PO | Permeabilty | Tnicknes
HW-3 Oil Zone 0.59 0.40 1.63 23.8 27.05 117
HW-4 Downflank (TZ) 0.71 0.46 3.06 13.2 28.66 155
HW-5 Downflank (TZ) 0.42 0.55 1.79 7.0 0.39 138
HW-6 Oil Zone 0.56 0.42 151 18.1 17.94 157
HW-7 Downflank (TZ) 0.69 0.35 211 15.2 10.08 146
HW-8 Below FWL 0.69 0.31 2.96 16.7 17.07 120
HW-9 Downflank (TZ) 0.63 0.32 1.95 171 14.45 143
HW-10 Mid Flank 0.57 0.31 1.33 184 10.54 157
HW-24 Oil Zone 0.53 0.40 141 18.2 7.14 162
HW-25 Oil Zone 0.26 0.43 0.88 184 3.09 152
HW-26 Mid Flank 0.48 0.44 1.52 10.8 141 175
HW-27 Below FWL 0.69 0.38 2.05 18.7 7.88 176
HW-28 Mid Flank 0.63 0.35 1.62 171 19.42 196
HW-29 Oil Zone 0.62 0.35 1.62 26.1 39.20 214
HW-30 Oil Zone 0.68 0.17 2.26 26.8 48.01 177
HW-31 Below FWL 0.64 0.25 1.85 18.9 23.46 181
HW-32 Oil Zone 0.59 0.31 1.56 247 43.87 161
DOI: 10.17861/6e36e28d-50d9-4e31-9790-18db4bce6e5d
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Lorenz Plots - All Wells Lorenz Plots - Anticline 1
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Figure 3: Lorenz plots for all wells used to construct the full-sized model [left] and Lorenz plots for the closure
depicted in Figure 1 and 4 from which the synthetic production data was generated [right].
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Figure 4: Shelf-to-basin cumulative flow and storage capacity capturing multiple vertical and lateral
heterogeneities along with variable baffle zone thicknesses. Three geological closures are shown to demonstrate
the general heterogeneity of oil saturation distribution found across the model. Highlighted in red is the area we
targeted first to generate the synthetic production data.
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2.3 Synthetic SCAL Database

Our synthetic SCAL database, which is part of the released data, contains 110 capillary
pressure and PTSD curves from anonymized MICP data measured for a wide range of
carbonate plug samples, all linked to porosity, permeability and Winland R35 values.
Unimodal, bimodal, and trimodal PTSDs are present in the dataset, capturing multiple realistic
drainage capillary pressure curves for a wide range of carbonate pore fabrics. The open-source
provision of the underpinning raw data enables users to analyse the impact of using different
saturation height modelling functions on STOIIP and production.

MICP O/B

Capillary Pressure (psia)

0.0 01 0.2 03 04 05 0.6
‘Water Saturation (Frac.)

Capillary Pressure (psia)

0.0 0.1 02 03 04 05 06
Water Saturation (Frac.)

Figure 5: Synthetic SCAL database which consists of 110 carbonate plug sample MICP mimicked data.
Showcased in column 1 are the capillary pressure data at two different maximum pressures of 40 and 120 psi

0.7
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0.001 0.010 0.100 1.000 10.000 100.000
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(equivalent to 310 and 930 ft height above FWL respectively) and column 2 showcases the MICP PTSDs original

versus normalized data.
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RRT 1 RRT 2
(R3S 002 jum) (R3S 0.2-0.4 )

RRT7 RRTH

RRT 10
(R3S 1.8-20 pm)

RRT 16
(R3S L0-3.2 )

Figure 6: 27 RRTs with a selection of at least 3 drainage capillary pressure curves for each. A ‘truth’ combination
for model initialization has been selected. There are over 53 trillion model initialization scenarios. Y -axis is
limited to a maximum of 40 psi which is equivalent to a height above FWL of 310 ft Winland R35 ranges
increasing from RRT 1 (0 — 0.2 pum) to RRT 27 (>7 pm).
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Pore Throat Radius (microns)
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Figure 7: Cross plots for the 110 mercury injection capillary pressure data included in the open-source dataset
[left column]. 27 Winland R35 poro-perm transforms range from 0.1 to 7 um. Three selected reservoir rock types
with a minimum of three samples per reservoir rock type [right column]. Note the wide range of capillary threshold
pressures (from 1 to 20 psi), as well as porosity and permeabilities and pore throat size distributions (from

unimodal to trimodal).
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2.4 Petrophysical Modelling

A 3D collocated co-kriging (or bivariate distribution) Sequential Gaussian Simulation (SGS)
distribution relating porosity and permeability was established such that both independent
values are honouring the geological trends of the RRT maps. To achieve this, cross-plots of
multiple pore throat size distribution ranges from Winland R35 were created and used as a
constraint for the spatial trends in the petrophysical data.

600
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0 3 6 9 12 15 18 21 24 27 30 33 36
Cored Porosity (%)

R35 Permeability (mD)

0o 3 6 9 12 15 18 21 24 27 30 33 36

Cored Permeability (mD)

0 3 6 9 12 15 18 21 24 27 30 33 36
Cored Porosity (%)

Figure 8: Raw porosity vs. permeability cross plot before well upscaling [top], 27 Winland R35 PTSD ranges (0
to 7 um) [centre] and conformed bivariate distribution of porosity and permeability according to the 27 Winland
R35 pore throat size ranges and trending spatially by honouring the facies map [bottom].

Once an arbitary relationship between porosity and permeability was established using 27
Winland R35 ranges (0 — 7 um) the next stage was to convert continuous data into discrete data
(RRTSs). For this purpose the Winland R35 values were first calculated as follows [2];

Winland R35 = 10(0.538*10gk—0.864*10g¢)+0.731 (1)

The 27 discrete RRTs were then assigned according to the arbitrary ranges of mean PTSDs
shown in Table 4.
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Figure 9: Continuous distribution of mean pore throat size distribution (microns) across the entire model [A].
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Discrete distribution of 27 grouped micron ranges from 0 to 7 um [B].

Table 2: Modelling approach

Property

Modelling Approach

Porosity

SGS

Permeability

SGS & Collocated Co-Kriging SGS

Facies / RRTs

Winland R35 PTSD

Water Saturation

Skelt-Harrison
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2.5 Synthetic Well Logs

Synthetic water saturation (S,,) for wells without resistivity measurements (R;) has been
computed using a Generalized Reduced Gradient (GRG) Nonlinear Solver, which attempted to
back calculate the most appropriate R, value for a given S,,, profile. The solution of computing
a synthetic S,, profile by rearranging Archie’s saturation variables was non-unique. Archie’s
equation is given by [1]

1

Sw = (o + 2", )

o™ R

where m is the cementation exponent (function of tortuosity), n is the saturation exponent
(function of wettability), R,, is the resistivity of formation brine, R, is the true resistivity of
formation (virgin zone) and ¢ is porosity.

Table 3: Rearrangement of Archie's equation.
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Figure 10: Synthetic water saturation profiles created for wells without resistivity data using a GRG Nonlinear
Solver to back calculate the appropriate trends of petrophysical data for a given water saturation profile.
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2.6 Saturation Height Modelling
Using drainage capillary pressure curves from our synthetic SCAL database, we generated

water saturation height functions for all 43 wells under study and compared the results with the
open hole derived water saturations. The Skelt-Harrison saturation function given by [3]

B C
SW:l_A*exP<_<D+HAFWL> ) (3)

where A, B, C and D are coefficients to match the capillary pressure curve for each RRT using
a GRG Nonlinear Solver. Figures 11 and 12 show the comparison between open hole log S,
and SCAL S,, for different heights above FWL (e.g., crest — flank).
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Figure 11 depicts the high-resolution distribution of water saturation for eight wells at different heights above the FWL (e.g., from crest to flank). In

Figure 11 we also compare the water saturation derived from the open-hole logs and those from our saturation height functions. Our truth case has an
undisclosed number of OWCs and capillary transition zone thicknesses.
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Figure 11: Eight example well logs and 3 tracks at multiple heights above the FWL. Height above the FWL (0 to 545 ft) [1% track], distribution of 27 reservoir rock types (1 to 27)
[2" track] and water saturation derived from our saturation height functions (upscaled) and the open-hole logs (continuous black line) [3™ track]. Water saturation ranges from 100%
(blue) to 0% (dark orange). The reservoir rock typing methodology and the saturation height functions used have a good match with the water saturation derived from the open-hole
logs. Scale fixed at 1:220 ft true vertical depth sub-sea. Depth is hidden in order to conceal the FWL of our truth case.

&
H
i
i T
|

DOI: 10.17861/6e36e28d-50d9-4e31-9790-18db4bce6e5d



Supplementary Material

i
I

i
i T
i | LT

— = “-.'.'

== =l == ==R4=:ll

Sl =] _:gu |
s = 2. _I‘
ers B | t i
— =& = = ==
...... === 3 == ==
T i (I -
: =5 - 8= = =8

; =  § =8 S=EERN-S )

LRGR

e
e

{E

ey

H|1=HHHN|J’I'¢‘HUWJHII:U

v

MR A

f
o

i

L T

il Rt

e e e e R S
= 4 ——=

—alt =s-=bll = = —ild 2=
_ 55 3 = H B

_ ﬁé § 1

i Sl Sill==
N gl S8

Figure 12: Eight example well logs and 11 tracks from multiple heights above the FWL. Height above the FWL
(0 to 545 ft) [1%1], gamma ray (2.2 to 27 gAPI) [2"], density (2.1 to 2.7 g/cm?®) [3"], density (1.9 to 2.9 g/cm?) vs.
neutron porosity (-0.15 to 0.45 ft3/ft%) [4"], neutron porosity (0.05 to 0.4 ft¥/ft®) [5"], cored porosity (5 to 40 ft3/ft%)
[6™], cored porosity vs. neutron porosity [7"], cored permeability (0.1 to 500 mD) [8t"], formation resistivity (0.2
to 200 ohm) [9™], water saturation (0 to 100%) from saturation height functions (upscaled) and open-hole log
water saturation (continuous black line) [10"] and reservoir rock types (1 to 27) [11%]. Scale fixed at 1:280 ft true
vertical depth sub-sea (depth hidden).
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2.7 Reservoir Characteristics
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Figure 13: Wells and coordinates [left] and top depth map with synthetic contour lines [right]. The red line shows the 180 km cross section depicted in Figure 14 and Figure
15.
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Figure 14: Cross sections (southwest to northeast ~180 km) showcasing multiple vertical and lateral petrophysical
properties across the three structural closures found in our truth case. Density (2.1 to 2.7 g/cm?) [A], gamma ray
(2.2 to 70 gAPI) [B], porosity (0.05 to 0.35 ft¥/ft®) [C], permeability (0.1 to 1500 mD) [D] and cementation
exponent m (1 to 4.5) [E]. Our undisclosed free water level is exemplified as the black horizontal line (formation

depth is hidden).
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Figure 15: Cross sections (southwest to northeast ~180 km) showcasing multiple vertical and lateral petrophysical
properties across the three structural closures found in our truth case. Saturation exponent n (1 to 4.5) [F], reservoir
quality index (0 to 4.5) [G], Winland R35 mean pore throat size (0.1 to 7 um) [H], reservoir rock types (1 to 27)
[IT and water saturation (0 to 100%) [J]. Our undisclosed free water level is exemplified as the black horizontal
line (formation depth is hidden).
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Figure 16: Lithology example of one particular well.
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Figure 17: Well coordinates for all 43 wells used in this study along with the general location of the regional
depositional environments. Highlighted in red are the six selected wells depicted in Figure 18 which highlight the
regional heterogeneity variation across our model. The flow unit architectures across all wells are diverse but
generally there is a trend; a more uniform flow and storage capacity in the shelf and basin areas and a more
heterogeneous contrast in and around the platform interior — margin areas.
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Figure 18: Regional flow unit architectures across the shelf-to-basin profile (Figure 17). Stratigraphic flow
profiles have a normalized cumulative flow capacity (blue) and storage capacity (red) with respect to true vertical
depth sub-sea.
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Figure 19: Key reservoir characteristics of all 43 wells used in this study ordered from lowest y-northing to
highest y-northing (from shelf to basin). The six wells shown in Figure 17 and Figure 18 are also highlighted in
red (x-axis).
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2.8 Dynamic Reservoir Properties
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Figure 20: Drainage capillary pressure curves honouring irreducible water saturation cut-offs [top], the relative
permeability of oil (green) and water (red) [centre], and forced imbibition capillary pressure curves honouring
irreducible water saturation and residual oil saturation after waterflood cut-offs [bottom].
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To generate forced imbibition (non-wetting phase displaced by wetting phase) capillary
pressure curves we used a modified Skjaeveland equation (Eq. 4) [4]. To generate oil-water
relative permeability curves we used the modified Brooks and Corey equations (Eg. 5 & 6) [5];

1-Sy —Sorw )nCOWJr . (1 Sw — Sorw

Ncow—
Peowi = Peowstar * (1 ) (4)
orw

- Swirr - Sorw - Swirr =S
S, — Sy Mtw
krw = krwiro * (1 _;} iw;r _ ) (5)
orw wirr
1-S -S Mo
krow = Krocw * (1 S OTW_ S W ) ) (6)
orw wirr

where P, starr 1S the capillary pressure maximum at S, S IS the irreducible water
saturation, S,,,, IS the residual oil saturation after waterflood, P..., is the capillary entry
pressure, n.,w+ and n.,,,_ are coefficients for the positive and negative sections of the forced
imbibition capillary pressure curve. k., IS the water relative permeability maximum at
Swirrs krocw 15 the oil relative permeability maximum at S,,;,, n, and n,, are exponents for
oil and water respectively.

Table 4: Correlations between relative permeability and wettability index.

Wettability Krw VS. Krow interception
Water Wet >0.7
Slightly Water Wet 0.55-0.7
Neutral 0.45-0.55
Slightly Oil Wet 0.45-0.3
Oil Wet <0.3
USBM Wettability Index
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Figure 21: United States Bureau of Mines wettability index per reservoir rock type honouring the wettability,
irreducible water saturation, and residual oil saturation after waterflood in the relative permeability curves.
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Figure 22: Synthetic relationship used between irreducible water saturation and residual oil saturation after
waterflood for each reservoir rock type.

Figure 22 shows the synthetic results for irreducible water saturation and residual oil saturation
after waterflood for each RRT used to calculate the wettability indexes. The wettability
characteristics attempt to honour the following phenomena;

- High irreducible water saturation indicates water-wet tendency

- Intermediate irreducible water saturation indicates mixed-wet tendency
- Low irreducible water saturation indicates oil-wet tendency
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Table 5:

Dynamic characteristics of our 27 reservoir rock types for reservoir simulation. Conditional colours were

applied to the wettability index column. USBM wettability index values range from strongly water wet (dark blue)
to strongly oil wet (dark red).

. Total
e || e ?(% S (%) | ODUE | f{;i‘p’:{gn (Dr:nlage (.mﬁﬁon Wgtf:bl\i/llity

off (um) (%) P, P, Index
1 0-0.2 0.9 0 0.1 0.94 1.73 0.67 _
2 02-04 | 087 0 0.13 0.94 257 1.08 0.38
3] 0.4-0.6 0.84 0 0.16 0.95 1.74 0.71 0.39
4 0.6-0.8 0.8 0 0.2 0.92 1.59 0.68 0.37
5 0.8-1.0 0.77 0 0.23 0.88 1.37 0.65 0.32
6 1.0-1.2 0.4 0.1 05 0.73 3.45 1.56 0.34
7 12-14 0.36 0.11 0.53 0.72 2.26 1.05 0.33
8 14-16 0.32 0.12 0.56 0.7 3.12 1.59 0.29
9 16-18 0.29 0.07 0.64 0.67 3.1 1.85 0.22
10 1.8-20 0.25 0.1 0.65 0.59 3.99 2.76 0.16
11 2.0-22 0.24 0.14 0.62 0.57 4.65 2.68 0.24
12 22-24 0.23 0.12 0.65 0.55 2.68 1.68 0.2
13 2.4-26 0.22 0.1 0.68 0.52 3.95 3.68 0.03
14 26-28 0.21 0.1 0.69 0.5 2.68 2.72 -0.01
15 2.8-3.0 0.2 0.11 0.69 0.49 3.18 2.94 0.03
16 3.0-32 0.19 0.07 0.74 0.47 2.05 2.14 -0.02
17 32-34 | 018 0.14 0.68 0.53 253 2.82 -0.05
18 34-36 0.17 0.07 0.76 0.43 2.47 3.47 -0.15
19 36-38 0.16 0.11 0.73 0.42 2.56 3.74 -0.16
20 3.8-40 0.15 0.16 0.69 0.36 1.72 2.98 -0.24
21 40-46% | 0.14 0.13 0.73 0.36 1.99 3.78 -0.28
22 46-50% | 013 0.17 07 0.41 2.17 3.78 -0.24
23 5.0-5.5* 0.12 0.26 0.62 0.31 1.46 3.1 -0.33
24 55-6.0% | 0.1 0.18 071 0.29 2.21 471 -0.33
25 6.0-6.2 0.1 0.21 0.69 0.28 2.28 5.07 -0.35
26 6.2 -7.0* 0.09 0.27 0.64 0.24 1.05 2.74 -0.42
27 >7.0 0.08 0.3 0.62 0.23 0.74 2.23 -0.48

Table 5 showcases the dynamic characteristics of the RRTs used for reservoir simulation.

1

With degrading Winland R35 PTSDs, the samples’ irreducible water saturation values
are increasing. The relationship between irreducible water saturation and residual oil
saturation after waterflood are showcased in Figure 20.

Total mobile fluids per RRT is the difference between irreducible water saturation and
residual oil saturation after waterflood.

Areas for both A, and A, along with their respective USBM wettability indexes were
computed.
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3. Reservoir Model Description

Table 6: Dynamic reservoir model description for one ensemble member.

Reservoir Description

Avg. Reservoir Length, km 60
Avg. Reservoir Width, km 26
Avg. North & South Flank Dip, degrees 0.6
Avg. East & West Flank Dip, degrees 1
Avg. Reservoir Thickness, ft 160
Shallowest Model Depth, ft 7,337
Deepest Model Depth, ft 8,461
Avg. FWL, ft 8,135
Reservoir Zones 8
Baffle Zones 7
Geological Layers 62
Avg. STOIIP, bbl. 1.1x10°
Avg. Water Saturation, % 41
Reservoir Gridding

Gridding 181*190*62
Grid Size (X & y), m 250
Grid Thickness Range, ft 0.8-8.0
Rock & Fluid Properties

Avg. Porosity, % 21
Avg. Porosity Coefficient of Variation (Cv) 04
Avg. Permeability, mD 15
Avg. Permeability Coefficient of Variation (Cv) 1.8
Avg. Lorenz Coefficient 0.6
Rock Compressibility, 1/psi 1*106
Reservoir Temperature, F 251
Water Compressibility, 1/psi 3.7*%10°6
Water Formation Volume Factor (FVF), RB/STB 1.06
Water Density, Ib/ft3 65.34
Water Viscosity, cp 0.31
Water Salinity, ppm 157,482
Oil Density, Ib/ft3 50.86
Oil Compressibility, 1/psi 3*10°
Oil Formation VVolume Factor, RB/STB 1.53
Gas Oil Ratio (GOR), scf/STB 731
Gas Specific Gravity 0.6
Initial Conditions

Initial Reservoir Pressure, psi 4,400
Reference Depth, ft 7,350
Bubble Point Pressure, psi 2,166
Relative Permeability Analytical Data

Avg. Irreducible Water Saturation (Swir), fraction 0.32
Avg. Residual Oil Saturation after Waterflood (Sorw), fraction 0.12
Avg. Total Mobile Fluids, % 0.57
Avg. Relative Permeability to Water (kmw) and Oil (ky,) Interception, fraction 0.56
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Table 7: Well controls for the initial full field development plan. A conservative BHP regulated production
constraint was set to all the producers to be 334 psi above the bubble point. All water injectors were constrained
only by BHP of 6,000 psi to be under the synthetic fracking pressure of this reservoir.

Vertical Producer Wells

BHP Regulated Production, psi 2500
Rate Controlled Production, bbl./day 5,000
Perforations, layers 1-62

Vertical Infill Water Injectors
BHP Regulated Injection Pressure, psi 6000
Perforations, layers 32-62
Vertical Peripheral Water Injectors
BHP Regulated Injection Pressure, psi 6000
Perforations, layers 1-62
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3.1 Subsectors

As part of the open-source COSTA Model dataset we also include seven small subsectors (C1 — C7) which originate from one ensemble member.
These subsectors cover multiple structural locations capturing numerous reservoir architectures. All subsectors have an average dimension of 100
km? and 92,000 active grid blocks. The dynamic performance varies considerably e.g., water break through time, oil production (Figure 23).
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Figure 23: Location of our seven subsectors (C1 — C7) [left] and their field performances [right]. The subsectors incorporate the same field development plan with all 144
ensemble members and therefore some subsectors e.g., C3 start producing at a much later date (2040).
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3.2 Skin Effect

All production wells that are a part of our truth case synthetic production data have been
assigned variable, positive or negative, skin for each of the individual 248 producing wells. We
assigned an undisclosed variable skin on all producer wells because in real fields the skin is
often unknown and needs to be matched. All ensemble members which are a part of the open-
source package have been assigned a skin effect of zero.
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Figure 24: Field performance comparison of a case with zero skin (solid lines) and case with positive and negative
skin randomly selected for each of the individual 248 producing wells (dashed lines) [left]. An example of a single
producer well with a negative skin (solid line) helping improve the oil production rate [right].
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3.3 RRT Effect
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Figure 25: Field performance and reservoir characterisation of a single ensemble member with four clustered
reservoir rock type maps; 27 RRTs [red], 7 RRTs [blue], 5 RRTs [orange] and 3 RRTs [green]. Qil production
rate [A], oil production cumulative [B], oil recovery factor [C], water-cut [D], average field oil saturation with
height above the FWL [E], rock type distribution along a single well [F], average field relative permeability to
water at irreducible oil [G] and average field maximum oil-water capillary pressure [H].
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Figure 26: Laterally averaged properties for a given reservoir layer across all ensemble members with 7 RRTSs.
Differences in net pore volume, gross block volume and grid thickness are associated with having two different
stratigraphic frameworks concepts e.g., the interpretation of the formation tops, baffle tops and their respective
thicknesses. Wide range of average field values for porosity are due to the use of wireline or cored values.
Permeability profiles vary due to the well-log upscaling technique used and spatial modelling approach (linked to
facies maps). Both porosity and permeability have also been modelled with a reduced horizontal anisotropic range.
Differences in oil per unit area (layer), oil per unit area (total), average field maximum oil-water capillary pressure,
and average field relative permeability to water at irreducible oil are also demonstrated.
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Figure 27: Laterally averaged properties for a given reservoir layer for all ensemble members with a variable
number of reservoir rock types e.g., 3, 5, 7 and 27 RRTs showing the differences in oil per unit area (layer), oil
per unit area (total), maximum water-oil capillary pressure and relative permeability of water at irreducible oil

with respect to reservoir height.
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Figure 28: Distribution of relative permeability of water at irreducible oil and reservoir rock types along well
HW-10. The seven relative permeability curves used in this particular ensemble member are also shown.
Wettability varies from strongly water-wet (RRT 1) to strongly oil-wet (RRT 7).
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3.4 Grid Refinement & Ultimate Recovery Factor
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Figure 29: Field performance affected by grid refinement for one ensemble member. Original model grid
dimension 250 x 250 m [blue], 125 x 125 m [red] and 62.5 x 62.5 m [green].
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Figure 30: Ultimate recovery factor and field performance affected by grid refinement for one ensemble member.
Original model grid dimension 250 x 250 m [blue], 125 x 125 m [red] and 62.5 x 62.5 m [green].
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3.5 Synthetic Production Data
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Figure 31: Random Gaussian noise added synthetic production data. Showcased side-by-side are zoomed in time

sections for a particular well.
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4. Understanding the Data

Supplementary data associated with this article can be found in the data repository for the
COSTA model at https://doi.org/10.17861/6e36e28d-5009-4e31-9790-18db4bce6e5d.
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» Data to build your own 3D Geo-Model (well heads, well logs & contour maps)
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» Database (SCAL, saturation height functions, relative permeability tables etc.)
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