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Supplementary figure and table captions

Fig. S1	Generalized stratigraphy of the Kurkur–Dungul area (based on Issawi 1968).
Fig. S2	Satellite map of the studied area showing the position of the sampled locations.
Fig. S3	Position of the sampled tufa deposits with the indication of the sampling points.
Fig. S4	Field photographs showing the macromorphology of the studied deposits at Kurkur Oasis. a) densely-packed Intraclastic rudstone (FA5) consists of rounded to sub-rounded, fine to coarse-grained pisoids (0.5 to 3 mm in diameter) showing normal grading (coarsening upwards) and imbricated-structure at top part, forming sheets to channelized bodies, Kurkur Oasis, site 1; b) FA5 rudstone displaying cross-bedding to normal grading, Kurkur Oasis, site 1; c) FA1 peloidal tufa including brecciated lithic fragments of the older bedrock, Kurkur Oasis, site 2; d) vertically-aligned plant casts of rush and reed stalks in growth position (FA4), Kurkur Oasis, site 3; e) porous FA5/FA4 accumulation consisting of phytoclastic (horizontally-aligned) and phytohermal (vertically-aligned) casts, Kurkur Oasis, site 3; f) example of FA4 phytohermal tufa from Kurkur Oasis, site 3; g) example of FA4 phytohermal tufa from Kurkur Oasis, site 4; h – j) highly porous FA4 tufa with plant stems and tree trunks preserved as empty moulds, Kurkur Oasis, site 5; k) concentric spherical-shaped FA2, Kurkur Oasis, site 5; l) small-scale concentric spheroidal-shaped crystalline boundstone FA2, Kurkur Oasis, site 5. 
Fig. S5	Field photographs showing the macromorphology of the studied deposits at Gebel El–Digm area. a) tufa deposits unconformably overlie the Dakhla Shale, Gebel El–Digm, site 1; b, c) FA4 deposits rich in casts of plant stems and branches, Gebel El–Digm, sites 1 and 2, the pen for scale is 12 cm; d - f) thin laminated FA3 tufa having pillow-like structures and displaying porous inner core in cross section containing rich phytoherms, whereas the cortex is wavy, convolute-laminated (1–2 mm-thick each) showing exfoliated structure, Gebel El–Digm, site 3.
Fig. S6	Field photographs showing the macromorphology of the studied deposits at Dineigil Oasis. a – c) Coated plants tufa rich in vertical (FA4) and horizontal (FA5) positions casts, molds, fossil leaves, some still preserve its organic composition. It is unconformable deposit on the Kurkur Formation along the slope of the Sinn El–Kaddab Scarp.
Fig. S7	Field photographs showing the macromorphology of the studied deposits at Dungul Oasis and Gebel Kalabsha. a, b) tufa accumulations covering the thin-bedded limestone of the Garra Formation, Dungul Oasis, sites 1, 2; c - e) phytohermal FA4 deposits, rich in vertical mammillated plant casts and chaotic-order branch’s moulds at top, Dungul Oasis, sites 1, 2; f) thin-bedded tabular FA1 tufa with local FA6 lenses and no plant remains, Dungul Oasis, sites 3, 4; g) hard, blocky massive rocks, grey to yellowish grey, with no plant remains, Dungul Oasis, site 5; h, i) fractures filled with clean crystalline calcite deposits (FA7) at Gebel Kalabsha.
Fig. S8 	Photomicrographs showing the microfacies features of the studied tufa rocks. a) Clotted peloidal mudstone with fenestral and voids; b) Clotted peloidal mudstone; c) Crystalline dendrite boundstone organized in laminae of feather-like calcite crystals; d) wavy Laminated boundstones with alternation with light microsparitic and dark micritic peloidal laminae; e) hemidomic laminated clotted boundstones coating sub-spherical to elliptical cavities (phytoclasts); f) Intraclastic packstone of peloids (some with micritic cortex), pellets and linear fragments cemented with a microsparitc light calcite; g) example of irregular Micritic dendrite formed with peloidal clots and surrounded by microsparitic calcite cements; h) detail of circular-elliptical to linear sections of filaments (black) surrounded by light microsparitic coatings.
Fig. S9	Correlation between the δ13C and δ18O values at: a) Dineigil Oasis; b) Gebel El-Digm (sites 1–3); c) Dungul Oasis (sites 1–5).
Fig. S10	Areal distribution of 13Ctufa, 18Otufa, T47 and calculated 18Owater values from this study and 13Ctufa, 18Otufa from literature: Dakhla Oasis (Kieniewicz and Smith 2009; Jimenez 2014), Kharga Oasis, Refuf Pass and Wadi Midauwara (Smith et al. 2004a; Jimenez 2014), Farafra Oasis (Wanas 2012), Petrified Forest, New Cairo, Egypt (Hassan 2015), Crystal Mountain (Jimenez 2014). The dashed square is our study area. The 13Ctufa, 18Otufa values are average values from the sites.
Fig. S11 	Correlation between the U/Th age data and elevation of the studied tufa samples.


Table S1	Description of the locations and coordinates, elevation and thickness of the deposits.
[bookmark: _GoBack]Table S2 	Summary of the identified lithofacies and their related depositional environments.
Table S3 	Stable carbon and oxygen isotopic composition of all analysed tufa and calcite samples and their microfacies types. The 230Th ages of the dated tufa samples are indicated for comparison.
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