Properties and distribution of lower crustal bodies on the mid-Norwegian margin
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Introduction W — %// .
The mid-Norwegian margin Y- ‘ jkﬂ ’ /178’2
comprises the Mare, Varing and - EE ) 7
Lofoten-Vesteralen margin %i’“;i /
segments. Anomalously high e I //

. . . L >
velocity and high density L R
bodies have been detected in e
the lower crust on the . —

margin. The lower crustal

bodies (LCB) are pronounced on the

Mgre and Varing margins segments and
have mainly been interpreted as magmatic
underplate. Evolutionary models of the whole margin are heavily
affected by the interpretation of the lower crustal bodies and so are
estimates of vertical movements and thermal structure in the area.
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3D density and magnetic models of the mid-Norwegian margin
segments were compiled to map the main geological features of the
margin and define the distribution of the lower crustal bodies.

The models utilize the most recent potential field compilations and
are constrained by extensive reflection seismic data and published
refraction profiles. Further constraints on the model were attained
from studying the isostatical state of the lithosphere and thermal Cretaceous Highs Tertiary Domes and Arches
modelling. We present a map showing the distribution of the
different lower crustal bodies and discuss the implications for the
Structural and thermal eVO|UtiOn Of the margin. - Platform and shallow Terrace - Permo-Triassic Basin
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Isostatic Considerations

Isostatic flexural Moho was calculated (T =10) and compared to the model Moho.

The difference map demonstrates how the model Moho is deeper than the isostatic

Moho close to the escarpments but shallower in the center of the basins. Because

a high density body is part of the model, while it is not part of the isostatical

calculations, it is problematic to explain the shallow model Moho without assigning

the high density body to a density mantle anomaly. In order to reconstruct this Moho
— configuration with isostatic and flexural considerations a process oriented approach
is needed. T =5 value during rifting and T =25 during sedimentation managed to
reconstruct the Moho geometry below the Mgre basin.
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Indications of origin

The mid-Norwegian margin tectonic evolution includes three
events that each can be related to the generation of high
velocity lower crust.

1) High grade metamorphism during the Caldonian orogeny.
Such rocks are exposed both onshore Norway and East
Greenland. The intervening margins must have been
subject to similar high grade metamorphism.

2) Slow and extreme extension during the Cretaceous rifting
led to serpentinization of exhumed mantle.

3) Rapid opening of NE Atlantic in Eocene time led to large
melt generation along the break-up axis.

Implications

The heat flow in a given basin will vary strongly depending
on which of above mechanisms generated the LCB.

HOT Underplating
Significant crustal/lithospheric thinning
Thick magmatic underplate adds significant heat

Serpentinized mantle
Significant crustal/lithspheric thinning, but slow

and not so hot
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