ismic imaging of variable water layer sound
structure in Rockall Trough, NE Atlantic:

Implications for planning seismic surveys in deep water
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1. Introduction

Variation in sound speed within ocean water can cause serious
problems in subsurface seismic reflection imaging. Water layer
sound speed variations arise from natural variations in
temperature and salinity associated with oceanic currents.

In 3D seismic surveying, water layer sound speed variations
cause TWT offsets and amplitude variations between sail lines.
Vertical sound speed gradients cause ray bending and lead to
migration problems.

4D seismic surveying compounds these problems.

Even in a 2D survey, water layer sound speed variation can
adversely affect line ties and merging of re-shot sections of a
single line.

Important questions for the hydrocarbon industry include:

1) How might water layer sound speed vary during
acquisition of a single sail line?

2) How might sound speed vary between acquisition of
adjacent sail lines?

3) How might sound speed vary between repeated 3D survey
acquisitions in a 4D imaging program?

4) What acquisition and processing strategies are required to
cope with the expected variability?

The deep water basins offshore west of the UK and Ireland
provide a natural laboratory to study the effect of water layer
variability in seismic reflection images, and to compare the
signatures of water layer variability in legacy oceanographic
and seismic reflection datasets (Fig. 1).
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2. Oceanographic Data

Legacy oceanographic data Salinity (psu) Sound Speed (m/s)
from Rockall Trough, NE Py A S — 1490 1500 1510

Atlantic, illustrate both
pronounced vertical layering
and significant space-time
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Mean Sound Speed (m/s) Seabed Lateral Shift (m)

Seabed TWT vertical offsets of over 15 ms are expected if the water layer is assigned a constant sound
speed. Misties shown in Fig.3c & d result when the water layer is assigned the modal mean sound speed
of 1496.5 m/s.Poor choices for mean water layer sound speed will lead to larger mis-ties. Large mis-ties
are more likely in deeper water.

Ray bending can cause many
hundred metres of lateral shift in
water with vertical sound speed
gradients (Fig. 3e & f). If migration
iIs done using a constant water
layer sound speed, mis-positioning
of rays can significantly impair
subsurface images. In Rockall
Trough, the largest lateral shifts
occur in water depths shallower
than 1 km, and this problem is
equally severe in summer and
winter. The  mis-positioning
problem is less severe in deeper
water because of opposing sound
speed gradients at different levels
in the water column.
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Figure 4. Four CTD profiles (near Westline Fig. 8) highlighting that sound speed

lateral variability within layer 2+3 (Fig. 2) occurs at both a monthly and yearly

\scale, equivalent to the variation in reflections seen in seismic profiles (Section 3)./

5. Conclusion

Risk assessment for water layer variation is essential in 3D and 4D seismic acquisition and processing. Risk
also affects line ties and re-shot segment ties in 2D surveys.

Use legacy oceanographic data for initial assessment of water layer risk. Use legacy seismic data to refine
the risk assessment by showing how rapidly and by how much the water layer sound speed is likely to
vary at a given location.

In areas of vigorous oceanic mixing, such as offshore west of the UK and Ireland, expect strong water layer
variability along individual sail lines. Pick average water layer speeds at a fine horizontal scale (< Tkm).

In areas of strong vertical sound speed gradients, it is necessary to account for ray bending when migrating
data.

Make the water layer of seismic data avialbale for academic research into oceanic mixing. Improved
understanding of mixing will feed through into improved models of global oceanic circulation and global
climate change.

Ocean data indicate strong oceanic variability
on a basin scale. What is the variability on the
space-time scale of a seismic survey?

In Rockall Trough, the oceanic variability is
clearly visible as a strongly reflective layer at
depths between 500 m and 1.5 km. Related
to strongly developed temperature and
salinity fine structure observed over this
depth range in the oceanographic data.

Strong lateral variations of reflectivity are
visible. Some features can be interpreted as
eddies originating in Mediterranean
outflow water and carried into Rockall by
the along-slope current. The corresponding
thermo-haline variations are expected to be
associated with strong sound speed
variations.

Some reflective packages have steep and
sharp edges. Such edges will generate abrupt
changes in average sound speed along
individual seismic sail lines. Figures 6-8 show
these features.

Figure 5 Line 64, 56, 54, 52 from the ISROCK96 survey NE Rockall,
showing reflections in the water column that correspond to
changes in sound speed
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Re-shot sections (owing to gun
failure) show that there can be
significant variability in water layer
reflectivity at a single location over a
matter of hours.

These reflections are the result of
variations in temperature and salinty.
Over time these water properties
change and therefore different
reflections are observed over the 3-5
hour reshoot gap. These reflections
can be quantified in terms of average

seismic energy.

Figure 9. a) Line9 b) Line58 c¢) Line60 d) Line74 and
corresponding reshoot. Plotted on top is the average
seismic energy for the water column
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