

Supplementary Figure 1. Unannotated version of Fig. 4a: the fault vein (emphasised by orange shading) shows lateral steps (one indicated by arrowhead). The pseudotachylyte thickness along the fault varies from 3-15 mm, hammer length is 30 cm .

Supplementary Figure 2. Unannotated version of Figure 5: Field-scale geometries of pseudotachylyte (PST) faults in GSZ amphibolites. (a) pull-apart rhombochasm forms dilational stepover within pseudotachylyte fault cutting quartz vein in amphibolite (pencil length 15 cm) [57.7007$\left.{ }^{\circ} \mathrm{N} 05.6173^{\circ} \mathrm{W}\right]$; (b) reactivation of pre-existing shear band, with pseudotachylyte lining boundary (white lines) and internal (blue lines) faults as well as injecting into foliation and locally developing into pseudotachylyte breccias [$57.7121^{\circ} \mathrm{N} 05.6228^{\circ} \mathrm{W}$]; (c) reactivation of shear bands by brittle, pseudotachylyte-bearing faults, with breccia extensively developed in the underlying band [$57.7668^{\circ} \mathrm{N} 05.6168^{\circ} \mathrm{W}$]; (d) large pseudotachylyte fault branching at its tip [$57.7007^{\circ} \mathrm{N} 05.6304^{\circ} \mathrm{W}$]; (e) branching pseudotachylyte fault with injection veins developed off the thicker branch [57.6904 ${ }^{\circ} \mathrm{N} 05.6066^{\circ} \mathrm{W}$; (f) angular, wedge-shaped breccia developed between two non-parallel faults, potentially part of a paired fault zone [57.7070 ${ }^{\circ} \mathrm{N} 05.6219^{\circ} \mathrm{W}$].

