
Appendix 2 
 
 
Concordia diagrams 

Figure A1 shows Tera-Wasserburg concordia diagrams for detrital zircon in the 

young sediments, data from Appendix 1 in supplementary material.  

(a) Zircons from sediments of the Maputaland Group. 

(b) Zircons from Recent stream sediments on Karoo dolerite, Mesoproterozoic 

granite and gneiss and beach sand. 

(c) Zircons from Recent sediments deposited on Archaean basement rocks. Note 

that Archaean zircons in sample SA12/32 are shown in an inset at higher 
207Pb/206Pb ratio than the main part of the diagram. 
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Effects of discordance 

 
Zircons may be discordant because of loss of radiogenic lead after crystallization or 

because of the presence of uncorrected common lead (Andersen 2002, Gehrels 2012). 

In the present case, common lead has, as far as possible, been removed by a 

conventional common lead correction based on the observed 204Pb/206Pb ratio, so the 

residual discordance in grains reported in Appendix 1 is due to lead loss. Lead-loss 

discordance causes observed 206Pb/238U and 207Pb/235U ratios (and hence the 

corresponding ages) to be lower than the undisturbed values. If lead loss has taken 

place in the geological past (ancient lead loss), the 207Pb/206Pb ratio (and age) is also 

affected. In eastern South Africa, a significant thermal event at ca. 180 Ma related to 

Karoo magmatism and breakup of Gondwana may have caused lead loss effects also 

for the 207Pb/206Pb age.  

 

Two of our samples which have yielded a significant fraction of zircon showing lead-

loss effects will be used as examples here: SA12/32 and BS36A.  

 

For the Archaean age fraction in SA12/32, ancient lead-loss, probably of Mesozoic 

age caused in part severe discordance. Projecting these grains back to the concordia 

from the origin (i.e. calculating the 207Pb/206Pb age) results in ages in the range 3000-

3200 Ma (Fig. A2a), suggesting the existence of a late Palaeoarchaean to early 

Mesoarchaean age fraction in this sample. The concordant (i.e. less than 10 % 

normally discordant) grains do not show indications of such a fraction. This apparent 

age fraction is a result of significant loss of radiogenic lead in an event that is 

sufficiently old to affect the 207Pb/206Pb age. Effects of this lead loss event is seen also 

in ca. 3.55 Ga basement rocks from the same area (Jele, 2014), and in many rocks 

from other parts of the Kaapvaal Craton (e.g. Zeh et al., 2010, 2011, 2013) 

 

In  contrast, BS36A has a single Mesoproterozoic age fraction (1000-1150 Ma), 

overprinted by both Mesozoic and Recent lead loss (Fig. A2b).The origin of zircon in 

this sample may be from ca. 1.15 -1.20 Ga gneisses and granitic intrusions of the 

Mzumbe terrane of the Natal sector (McCourt et al. 2006; Spencer et al. 2015). Lead-

loss has spread the affected zircons out in a field limited by lead-loss lines to lower 

intercepts at 0 and ca. 200 Ma. The effect is most severe in the 206Pb/238U age (Fig. 



A2b) – if discordant zircons are included, spurious Neoproterozoic and Phanerozoic 

age fractions would be suggested. Even when using the 207Pb/206Pb on less than 10% 

discordant discordant zircon, a spread of ages towards 1000 Ma is indicated, which is 

not supported by Hf isotope data which suggest that the zircon population in this 

sample is monogenetic, except for rare, Palaeoproterozoic inheritance. 

 

Table A2 shows pairwise comparisons of the samples in the present study using the 

likeness and overlap parameters described in the main text applied to the whole data 

set, incuding discordant grains. These tables should be compared to Tables 2 and 3 in 

the main text. There are minor changes in L1, L2 and O values which are most 

noticable for pairs including SA12/32 and BS36A, which have the largest fractions of 

discordant grains, but the the overall pattern of overlap and likeness among the 

samples remains unchanged. 
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Table A1 Likeness and overlap parameters calculated from the complete datsaset (including discordant zircons).

L 1 BS36A C0445 C1690B DL11A DL13B DL13C SA1201 SA1232 SA1237 RBS   PONG13 Orange VRY   
BES   0.46 0.75 0.75 0.63 0.61 0.62 0.69 0.61 0.73 0.81 0.74 0.64 0.62
BS36A 0.46 0.54 0.29 0.28 0.29 0.72 0.34 0.40 0.53 0.39 0.54 0.29
C0445 0.80 0.72 0.71 0.73 0.68 0.60 0.82 0.83 0.79 0.69 0.72
C1690B 0.65 0.65 0.67 0.75 0.59 0.76 0.87 0.72 0.75 0.67
DL11A 0.76 0.79 0.50 0.51 0.79 0.65 0.72 0.54 0.84
DL13B 0.90 0.48 0.57 0.78 0.65 0.72 0.54 0.87
DL13C 0.50 0.57 0.80 0.67 0.73 0.56 0.89
SA12/01 0.55 0.61 0.74 0.62 0.66 0.49
SA12/32 0.62 0.60 0.68 0.53 0.57
SA12/37 0.78 0.86 0.66 0.81
RBS   0.76 0.73 0.66
PONG13 0.64 0.73

L 2 BS36A C0445 C1690B DL11A DL13B DL13C SA1201 SA1232 SA1237 RBS   PONG13 Orange VRY   
BES   0.17 0.60 0.62 0.54 0.47 0.41 0.57 0.46 0.53 0.69 0.55 0.42 0.50
BS36A 0.15 0.19 0.10 0.09 0.08 0.36 0.12 0.10 0.19 0.14 0.35 0.11
C0445 0.71 0.64 0.58 0.55 0.64 0.50 0.61 0.70 0.60 0.49 0.62
C1690B 0.61 0.55 0.52 0.65 0.49 0.63 0.74 0.58 0.54 0.60
DL11A 0.65 0.67 0.47 0.43 0.69 0.58 0.60 0.43 0.73
DL13B 0.71 0.41 0.46 0.69 0.58 0.64 0.43 0.72
DL13C 0.41 0.43 0.71 0.54 0.60 0.44 0.76
SA12/01 0.45 0.51 0.66 0.50 0.54 0.44
SA12/32 0.51 0.49 0.53 0.43 0.50
SA12/37 0.61 0.68 0.46 0.74
RBS   0.58 0.48 0.59
PONG13 0.48 0.64

O n(all) BS36A C0445 C1690B DL11A DL13B DL13C SA1201 SA1232 SA1237 RBS   PONG13 Orange VRY   
BES   100 0.87 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00
BS36A 80 0.87 0.87 0.86 0.87 0.87 1.00 0.74 0.87 0.88 0.88 1.00 0.85
C0445 80 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 1.00
C1690B 108 1.00 1.00 1.00 1.00 0.73 1.00 1.00 1.00 1.00 0.90
DL11A 55 1.00 1.00 0.89 0.89 1.00 1.00 1.00 0.89 1.00
DL13B 80 1.00 0.88 0.61 1.00 1.00 1.00 0.88 1.00
DL13C 65 0.88 0.75 1.00 1.00 1.00 0.88 1.00
SA12/01 74 0.76 0.92 1.00 0.97 1.00 0.87
SA12/32 55 0.71 0.73 0.87 0.97 0.58
SA12/37 103 1.00 1.00 0.95 1.00
RBS   102 1.00 1.00 0.92
PONG13 122 1.00 0.98
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