Mineral–fluid interactions in the late Archean Closepet granite batholith, Dharwar Craton, southern India

Published on 2019-01-07T15:22:14Z (GMT) by
The chemical compositions of different rocks as well as volatile-bearing, and volatile-free minerals have been used to assess the presence of fluids in the Closepet batholith and to estimate the intensity of the fluid–rock interactions. The data were processed using polytopic vector analysis (PVA). Additional data include measurements of water content in the structure of volatile-free minerals and an examination of growth textures. The compositions of mineral domains indicated formation/transformation processes with common fluid–mineral interactions. In general, the results suggested that the processes occurred in a ternary system. Two end-members were likely magmas, and the third was enriched in fluids. In contrast, analysis of the apatite domains indicated that they likely formed/transformed in a more complex, four-component system. This system was fluid-rich and included hybrid magma with a high mafic component. PVA implies that the fluids do not appear to come from one source, given their close affinity and partial association with mantle-derived fluids. A dynamic tectonic setting promoting heat influx and redistribution, and interaction of fluids suggests that the formation/transformation processes of minerals and rocks occurred in a hot-spot like environment.

Cite this collection

Slaby, Ewa; Gros, Katarzyna; Förster, Hans-Jürgen; Wurdakska, Alicja; Birski, Łukasz; Hamada, Morihisa; et al. (2019): Mineral–fluid interactions in the late Archean Closepet granite batholith, Dharwar Craton, southern India. Geological Society of London. Collection.