Major environmental change and bonebed genesis prior to the Triassic–Jurassic mass extinction
We present new geochemical and sedimentological data from marginal marine strata of Penarth Bay, south Wales (UK) to elucidate the origin of widespread but enigmatic concentrations of vertebrate hard parts (bonebeds) in marine successions of Rhaetian age (Late Triassic). Sedimentological evidence shows that the phosphatic constituents of the bonebeds were subjected to intense phosphatization in shallow current-dominated settings and subsequently reworked and transported basinward by storms. Interbedded organic-rich strata deposited under quiescent and poorly oxygenated conditions record enhanced phosphorus regeneration from sedimentary organic matter into the water column and probably provided the main source of phosphate required for heavy bonebed clast phosphatization. The stratigraphically limited interval showing evidence for oxygen depletion and accelerated P-cycling coincides with a negative 4‰ organic carbon isotope excursion, which possibly reflects supra-regional changes in carbon cycling and clearly predates the ‘initial isotope excursion’ characterizing many Triassic–Jurassic boundary strata. Our data indicate that Rhaetian bonebeds are the lithological signature of profound, climatically driven changes in carbon cycling and redox conditions and support the idea of a multi-pulsed environmental crisis at the end of the Triassic, possibly linked to successive episodes of igneous activity in the Central Atlantic Magmatic Province.