Geological Society of London
18468Sup1.pdf (283.06 kB)

Geochemical evolution of Dalradian metavolcanic rocks: implications for the break-up of the Rodinia supercontinent

Download (283.06 kB)
journal contribution
posted on 2016-06-21, 10:43 authored by D.J. Fettes, R. Macdonald, J.G. Fitton, D. Stephenson, M.R. Cooper

Neoproterozoic basaltic magmatism in the Dalradian Supergroup of Scotland and Ireland was associated with the break-up of the Rodinia supercontinent. Magmas were erupted in rift-related basins along a strike length of at least 700 km and during a time period of c. 80 Ma. New major and trace element analyses of metabasalts from several formations are presented to trace the variations in magma compositions in time and space. The primary magmas resulted from variable degrees of mixing of melts derived from mantle sources similar to those of normal and enriched mid-ocean ridge basalts; some younger lavas also show evidence of contamination with continental crust. In contrast to speculations about magmatism elsewhere in Rodinia, the evidence here suggests that there was no involvement of a mantle plume in basalt generation. For example, the Scottish promontory of Laurentia drifted rapidly southwards through c. 25° over the duration of the magmatism, with no evidence of significant elevation above sea level, as might be expected from involvement of a plume. Generation of the primary magmas might have taken place predominantly through decompression melting in depleted upper mantle containing enriched streaks and blobs. Both the Dalradian lithostratigraphy and the metabasaltic compositions are consistent with extreme lithospheric stretching and possibly rupture during the earliest phase of magmatism, whereas generation of later magmatism appears to have been associated with major fault systems, possibly on a foundering continental margin.