Geological Society of London
Browse
18298Sup1.pdf (941.07 kB)

Pre-eruption thermal rejuvenation and stirring of a partly crystalline rhyolite pluton revealed by the Earthquake Flat Pyroclastics deposits, New Zealand

Download (941.07 kB)
journal contribution
posted on 2016-06-21, 12:10 authored by CATHERINE MOLLOY, PHIL SHANE, IAN NAIRN

The Earthquake Flat Pyroclastics form a c. 10 km3 rhyolite deposit erupted at c. 50 ka from the margin of Okataina Volcanic Centre, immediately following the caldera-forming eruption of the Rotoiti Pyroclastics (c. 100 km3) from vents c. 20 km to the NE. Earthquake Flat Pyroclastics deposits display textural and compositional complexity on a crystal-scale consistent with rejuvenation of a near-crystalline pluton in the upper crust. Quartz and plagioclase crystals are resorbed, whereas hornblende and biotite are euhedral. Fe–Ti oxides indicate large variations in pre-eruption temperatures (702–805 °C). Differences of up to 70 °C within pumice lapilli show that crystals were chaotically juxtaposed during magma stirring and evacuation. Chemical zoning within hornblende crystals is consistent with rimward increases of c. 50 °C. These features are consistent with a convective self-stirring process. Previous isotope studies demonstrate a long (>100 ka) crystallization history for the magma. Resorption of crystals deep in the magma may have produced a Ca-, Fe- and Mg-enriched rhyolite melt that allowed the growth of reverse-zoned hornblende. Microdiorite lithic fragments in the Earthquake Flat Pyroclastics and Rotoiti deposits and a basaltic eruption that immediately preceded the Rotoiti eruption suggest that mafic underplating beneath Okataina Volcanic Centre provided a major thermal and volatile pulse to drive the caldera eruptions.

History