New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction Bryony A. Caswell Angela L. Coe Anthony S. Cohen 10.6084/m9.figshare.3454661.v1 https://geolsoc.figshare.com/articles/journal_contribution/New_range_data_for_marine_invertebrate_species_across_the_early_Toarcian_Early_Jurassic_mass_extinction/3454661 <p>We have reinvestigated the marine mass extinction interval that occurred during the early Toarcian, which was a time of widespread marine anoxia. The ranges of marine benthic invertebrates are significantly altered using new observations from the Cleveland Basin, UK. <em>Goniomya rhombifera</em> is reported for the first time from the Whitby Mudstone Formation and together with an increased epifaunal bivalve diversity indicates a brief, relatively oxygenated period towards the end of the event. The new data, together with published results, suggest three apparent extinction horizons on a global scale; the first is just above the Pliensbachian–Toarcian boundary, and the following two are in the <em>semicelatum</em> ammonite Subzone. As a result of the Signor–Lipps effect there may be only one, or possibly two, true extinctions. The youngest extinction horizon coincides with the first of the abrupt carbon isotope shifts that characterize this interval, and with increases in sea surface temperature, continental weathering rates, and seawater anoxia. <em>Pseudomytiloides dubius</em> is the only abundant benthic macroinvertebrate during the most hostile environmental conditions but it and all other benthic species are almost entirely absent for many thousands of years immediately after each abrupt negative carbon isotope shift. </p> 2016-06-21 12:16:19 Toarcian marine invertebrate species New range data benthic species marine benthic invertebrates oxygenated period Goniomya rhombifera sea surface temperature semicelatum ammonite Subzone Whitby Mudstone Formation weathering rates benthic macroinvertebrate Cleveland Basin extinction horizon marine mass extinction interval carbon isotope shift extinction horizons seawater anoxia mass extinction Pseudomytiloides dubius marine anoxia UK epifaunal bivalve diversity carbon isotope shifts Geology